ISSN: ISSN:2167-7964

Журнал радиологии OMICS

Открытый доступ

Наша группа организует более 3000 глобальных конференций Ежегодные мероприятия в США, Европе и США. Азия при поддержке еще 1000 научных обществ и публикует более 700 Открытого доступа Журналы, в которых представлены более 50 000 выдающихся деятелей, авторитетных учёных, входящих в редколлегии.

 

Журналы открытого доступа набирают больше читателей и цитируемости
700 журналов и 15 000 000 читателей Каждый журнал получает более 25 000 читателей

Индексировано в
  • Индекс Коперника
  • Google Scholar
  • Открыть J-ворота
  • Генамика ЖурналSeek
  • ИсследованияБиблия
  • Библиотека электронных журналов
  • РефСик
  • Университет Хамдарда
  • ЭБСКО, Аризона
  • OCLC- WorldCat
  • Онлайн-каталог SWB
  • Виртуальная биологическая библиотека (вифабио)
  • Публикации
  • Женевский фонд медицинского образования и исследований
  • ICMJE
Поделиться этой страницей

Абстрактный

A Preliminary Study on Multivariate Prediction of Seizure Outcome after Epilepsy Surgery

Jing Zhang, Hui Chen, Weifang Liu, Qingzhu Liu, Shanshan Mei and Yunlin Li

Surgical outcomes of epilepsy surgery vary across patients, and clinicians need to estimate possible outcomes before surgery. The aim of this study was to identify predictors of seizure outcome one year after surgery for patients with drug-resistant epilepsy. Twenty-three patients with Temporal Lobe Epilepsy (TLE) who underwent surgery were included in the study. Their demographical information, seizure history, findings of EEG and neuroimaging tests (mainly Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS), intracranial EEG (icEEG) findings, seizure outcome and pathological findings were reviewed. Bivariate analyses were performed to examine the univariate association of each variable with the outcome, and exclude the most insignificant ones. The remaining data were randomly assigned to the training and test sets, and three multivariate analysis approaches (Logistic Regression (LR), Linear Discriminant Analysis (LDA) and Artificial Neural Network (ANN)) were performed repetitively. Model performance was compared using Receiver-Operating Characteristic (ROC) analysis. Resampling the data to the training and test sets resulted in large variations in the classification accuracies of each multivariate approach. The ROC results indicated that the medium classification performances were moderate. Important outcome predictors identified included EEG lateralization score, icEEG lateralization score, and the presence of Hippocampal Sclerosis (HS). The results suggested that multivariate models could predict seizure outcome after TLE surgery with moderate accuracy. Further studies are needed to improve prediction accuracy and identify reliable predictors of seizure outcome.

Отказ от ответственности: Этот реферат был переведен с помощью инструментов искусственного интеллекта и еще не прошел проверку или верификацию.