Наша группа организует более 3000 глобальных конференций Ежегодные мероприятия в США, Европе и США. Азия при поддержке еще 1000 научных обществ и публикует более 700 Открытого доступа Журналы, в которых представлены более 50 000 выдающихся деятелей, авторитетных учёных, входящих в редколлегии.
Журналы открытого доступа набирают больше читателей и цитируемости
700 журналов и 15 000 000 читателей Каждый журнал получает более 25 000 читателей
Mickael Humphreys
Breast cancer is a significant global health concern, and early detection plays a crucial role in improving patient outcomes. Mammography, a widely employed imaging technique for breast cancer screening, can benefit from advancements in artificial intelligence (AI) technologies. This paper presents a comprehensive review of the utilization of AI in the detection of breast cancer through mammography. The review encompasses various AI approaches, including convolutional neural networks (CNNs), deep learning architectures, and machine learning algorithms, which have demonstrated substantial potential in enhancing the accuracy and efficiency of breast cancer detection. By analyzing a diverse range of studies, this paper highlights the key contributions, challenges, and future prospects of AI-powered breast cancer detection in mammography. The integration of AI techniques has the potential to revolutionize mammographic analysis, enabling earlier and more accurate diagnoses, ultimately leading to improved patient care and prognosis