ISSN: 2155-6199

Журнал биоремедиации и биодеградации

Открытый доступ

Наша группа организует более 3000 глобальных конференций Ежегодные мероприятия в США, Европе и США. Азия при поддержке еще 1000 научных обществ и публикует более 700 Открытого доступа Журналы, в которых представлены более 50 000 выдающихся деятелей, авторитетных учёных, входящих в редколлегии.

 

Журналы открытого доступа набирают больше читателей и цитируемости
700 журналов и 15 000 000 читателей Каждый журнал получает более 25 000 читателей

Индексировано в
  • Индекс источника CAS (CASSI)
  • Индекс Коперника
  • Google Scholar
  • Шерпа Ромео
  • Открыть J-ворота
  • Генамика ЖурналSeek
  • Академические ключи
  • ЖурналТОС
  • ИсследованияБиблия
  • Национальная инфраструктура знаний Китая (CNKI)
  • Справочник периодических изданий Ульриха
  • Доступ к глобальным онлайн-исследованиям в области сельского хозяйства (AGORA)
  • РефСик
  • Университет Хамдарда
  • ЭБСКО, Аризона
  • OCLC- WorldCat
  • Онлайн-каталог SWB
  • Публикации
  • Женевский фонд медицинского образования и исследований
  • МИАР
  • ICMJE
Поделиться этой страницей

Абстрактный

Assessing Bioremediation of Acid Mine Drainage in Coal Mining Sites Using a Predictive Neural Network-Based Decision Support System NNDSS)

Victor M. Ibeanusi, Erin Jackson, Juandalyne Coffen and Yassin Jeilani

In this study, an Artificial Neural Network (ANN) was developed as a predictive tool for identifying optimal remediation conditions for groundwater contaminants that include selected metals found at coal mining sites. The ANN was developed from a previous field data obtained from a bioremediation project at an abandoned mine at Cane Creek in Alabama, and from a coal pile run off at a Department of Energy’s site in Aiken, South Carolina. The evaluative parameters included pH, redox, nutrients, bacterial strain (MRS-1), and type of microbial growth process (aerobic, anaerobic or sequential aerobic-anaerobic conditions). Using the conditions predicted by the Neural Networks, significant levels of As, Pb, and Se were precipitated and removed over eight days in remediation assays containing 10 mg/L of each metal in cultures that include MRS-1. The results showed 85%, 100%, and 87% reductions of As, Pb, and Se, respectively. The results from these ANN- driven assays are significant. It provides a roadmap for reducing the technical risks and uncertainties in clean-up programs. Continuous success in these efforts will require a strong and responsive research that provides a decision support system for long-term restoration efforts.

Отказ от ответственности: Этот реферат был переведен с помощью инструментов искусственного интеллекта и еще не прошел проверку или верификацию.