ISSN: 2165-7025

Журнал новых физиотерапевтических методов

Открытый доступ

Наша группа организует более 3000 глобальных конференций Ежегодные мероприятия в США, Европе и США. Азия при поддержке еще 1000 научных обществ и публикует более 700 Открытого доступа Журналы, в которых представлены более 50 000 выдающихся деятелей, авторитетных учёных, входящих в редколлегии.

 

Журналы открытого доступа набирают больше читателей и цитируемости
700 журналов и 15 000 000 читателей Каждый журнал получает более 25 000 читателей

Абстрактный

Effect of Capacitive and Resistive Electric Transfer on Tissue Temperature, Muscle Flexibility, and Blood Circulation

Yuki Yokota, Yuto Tashiro, Yusuke Suzuki, Seishiro Tasaka, Tomohumi Matsushita, Keisuke Matsubara, Mirei Kawagoe, Takuya Sonoda, Yasuaki Nakayama, Satoshi Hasegawa and Tomoki Aoyama

Introduction: The differences between Capacitive and Resistive electric transfer (CRet) and hot pack (HP) in their effects on tissue temperature, muscle flexibility, and blood circulation are unknown. This study aimed to clarify the effect of CRet and HP on tissue temperature, muscle flexibility, and blood circulation. Methods: The participants were 13 healthy adults. They randomly performed three 15-minute interventions: (1) CRet, (2) HP, and (3) without powered CRet (sham). The intervention and measurement were applied to the right hamstring muscle. INDIBA® activ ProRecovery HCR902 was used in the CRet trial. The moist heat method was used in the HP trial. The measurement indexes were superficial temperature (ST), 10-mm deep temperature (DT), and 20-mm DT; the passive straight leg raise (SLR) test; and oxygenated (oxy), deoxygenated (deoxy), and total (total) hemoglobin (Hb) concentrations. Each index was measured for 30 minutes after the intervention and the amount of change (Δ) from the pre-intervention value was calculated. Results: ΔST, Δ10 mmDT, Δ20 mmDT, Δoxy-Hb, and Δtotal-Hb were significantly higher in the CRet and HP trials than in the sham trial for 30 minutes after the intervention (p<0.05). ΔSLR was significantly higher in the CRet trial than in the HP trial from 15 to 30 minutes after the intervention (p<0.01) Conclusion: Our results indicate that CRet is an efficient method for preventing and treating musculoskeletal injuries and improve muscle flexibility. In addition, it can improve blood circulation as well as HP can.