ISSN: 2476-2067

Токсикология: открытый доступ

Открытый доступ

Наша группа организует более 3000 глобальных конференций Ежегодные мероприятия в США, Европе и США. Азия при поддержке еще 1000 научных обществ и публикует более 700 Открытого доступа Журналы, в которых представлены более 50 000 выдающихся деятелей, авторитетных учёных, входящих в редколлегии.

 

Журналы открытого доступа набирают больше читателей и цитируемости
700 журналов и 15 000 000 читателей Каждый журнал получает более 25 000 читателей

Абстрактный

Environmental Toxicity Identification, Prediction, and Exploration Using Machine Learning: Problems and Perspectives

Mendeley Collins

Data-driven machine learning (ML), which has gained recent popularity in environmental toxicology, has distanced itself from hypothesis-driven research during the past few decades. The application of ML in environmental toxicology is still in its infancy, however, due to knowledge gaps, technical challenges with data quality, interpretability issues with high-dimensional/heterogeneous/small-sample data analysis, and a lack of a thorough understanding of environmental toxicology. We evaluate the most current advancements in the literature and highlight cutting-edge toxicological investigations utilising ML in light of the aforementioned issues (such as learning and predicting toxicity in complicated biosystems and multiple-factor environmental scenarios of long-term and large-scale pollution).

Отказ от ответственности: Этот реферат был переведен с помощью инструментов искусственного интеллекта и еще не прошел проверку или верификацию.