Наша группа организует более 3000 глобальных конференций Ежегодные мероприятия в США, Европе и США. Азия при поддержке еще 1000 научных обществ и публикует более 700 Открытого доступа Журналы, в которых представлены более 50 000 выдающихся деятелей, авторитетных учёных, входящих в редколлегии.
Журналы открытого доступа набирают больше читателей и цитируемости
700 журналов и 15 000 000 читателей Каждый журнал получает более 25 000 читателей
Kannan R, Ramanamurthy MV and Kanungo A*
The shoreline is one of the most important features on earth’s surface. They are highly dynamic and ever changing. Changes are over time scales including minutes, hours, decades and Centuries. Spatial scales vary from local to regional to worldwide. Although change is continuously occurring, it doesn’t occur in a constant manner. Many factors influence these changes including the type of shoreline (rocky, sandy), wave activity, tidal variations, storms and human impacts. The shoreline change study is necessary for updating the shoreline change maps and management of natural resources. Shorelines are the key element in coastal GIS and provide the most information on coastal landform dynamics. The frequently monitoring coast only to accesses variation of shoreline changes. In this paper investigate the shoreline changes of Nellore district in Andhra Pradesh coast, as well as find the quantity of the erosion and accretion rate. Using multi-temporal resolution satellite data (TM & LISS III, IV) and Geographic information system (GIS) for past 25 years period i.e., from 1989 to 2015. Nellore having length of coast line is 167 km for this study used. The resultant coastal maps were used to estimate the geomorphologic changes and shifting of the shoreline position. This integrated study is found useful for exploring accretion and erosion processes in the region. About 87.6 km of coastline was found to be accreting nature with average of +1.40 m/yr followed by 38.4 km of coastal line eroding with average of -1.36 m/yr and stable coastline of 41.4 km was found. This study demonstrates that combined use of satellite imagery and statistical method such as linear regression for shoreline change analysis are helpful for erosion monitoring and preventive measure.